59 research outputs found

    An erasure-resilient and compute-efficient coding scheme for storage applications

    Get PDF
    Driven by rapid technological advancements, the amount of data that is created, captured, communicated, and stored worldwide has grown exponentially over the past decades. Along with this development it has become critical for many disciplines of science and business to being able to gather and analyze large amounts of data. The sheer volume of the data often exceeds the capabilities of classical storage systems, with the result that current large-scale storage systems are highly distributed and are comprised of a high number of individual storage components. As with any other electronic device, the reliability of storage hardware is governed by certain probability distributions, which in turn are influenced by the physical processes utilized to store the information. The traditional way to deal with the inherent unreliability of combined storage systems is to replicate the data several times. Another popular approach to achieve failure tolerance is to calculate the block-wise parity in one or more dimensions. With better understanding of the different failure modes of storage components, it has become evident that sophisticated high-level error detection and correction techniques are indispensable for the ever-growing distributed systems. The utilization of powerful cyclic error-correcting codes, however, comes with a high computational penalty, since the required operations over finite fields do not map very well onto current commodity processors. This thesis introduces a versatile coding scheme with fully adjustable fault-tolerance that is tailored specifically to modern processor architectures. To reduce stress on the memory subsystem the conventional table-based algorithm for multiplication over finite fields has been replaced with a polynomial version. This arithmetically intense algorithm is better suited to the wide SIMD units of the currently available general purpose processors, but also displays significant benefits when used with modern many-core accelerator devices (for instance the popular general purpose graphics processing units). A CPU implementation using SSE and a GPU version using CUDA are presented. The performance of the multiplication depends on the distribution of the polynomial coefficients in the finite field elements. This property has been used to create suitable matrices that generate a linear systematic erasure-correcting code which shows a significantly increased multiplication performance for the relevant matrix elements. Several approaches to obtain the optimized generator matrices are elaborated and their implications are discussed. A Monte-Carlo-based construction method allows it to influence the specific shape of the generator matrices and thus to adapt them to special storage and archiving workloads. Extensive benchmarks on CPU and GPU demonstrate the superior performance and the future application scenarios of this novel erasure-resilient coding scheme

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Evaluation of the current treatment concepts in Germany, Austria and Switzerland for acute traumatic lesions to the prepatellar and olecranon bursa

    No full text
    Background: Although traumatic lacerations of the olecranon (OB) and praepatellar bursae (PB) are common entities often associated with complications, no study could be found on this injury. The aim of this study was to survey the current treatment concepts for acute traumatic laceration of the OB and PB in Germany, Austria and Switzerland. Materials and methods: An international online survey was conducted among orthopaedic and trauma surgeons in Germany (TraumaNetwork DGU), Austria (Austrian Society of Trauma (OGU) and Orthopaedic (OGO) Surgeons) and Switzerland (Swiss Orthopaedic Surgeons and Swiss Society of Infectious Disease (CH)) (n = 1967). The survey comprised of five demographical questions, the current treatment concepts were evaluated using a case study. Results: The overall-response-rate was 16% (12-46%). 88% of the responding physicians were male, aged 47.5 +/- 10.2 years with a mean working experience of 20.1 +/- 10.6 years. 54% of the surveyed physicians were either senior or chief physicians. Treatment concepts varied significantly between DGU and OGO/CH (p = 0.02/p = 0.006), no significant differences could be found between DGU and OGU. Generally, German and Austrian trauma surgeons favoured bursectomy (86.7%/90.9%) and immobilisation (68.3%/77.3%). Austrian orthopaedic surgeons performed fewer bursectomies (69.3%) but had the highest proportion for administering antibiotics (73.9%). Less than 50% of Swiss physicians indicated bursectomy as a treatment option. Conclusion: Overall, this survey revealed a significant heterogeneity in treatment approaches in Central Europe. Further evidence is needed to identify the best treatment concepts for traumatic lacerations of the OB and PB. (c) 2012 Elsevier Ltd. All rights reserved

    Neurodevelopmental correlates of the emerging adult self

    Get PDF
    The self-concept - the set of beliefs that a person has about themselves - shows significant development from adolescence to early adulthood, in parallel with brain development over the same period. We sought to investigate how age-related changes in self-appraisal processes corresponded with brain network segregation and integration in healthy adolescents and young adults. We scanned 88 participants (46 female), aged from 15 to 25 years, as they performed a self-appraisal task. We first examined their patterns of activation to self-appraisal, and replicated prior reports of reduced dorsomedial prefrontal cortex activation with older age, with similar reductions in precuneus, right anterior insula/operculum, and a region extending from thalamus to striatum. We used independent component analysis to identify distinct anterior and posterior components of the default mode network (DMN), which were associated with the self-appraisal and rest-fixation parts of the task, respectively. Increasing age was associated with reduced functional connectivity between the two components. Finally, analyses of task-evoked interactions between pairs of nodes within the DMN identified a subnetwork that demonstrated reduced connectivity with increasing age. Decreased network integration within the DMN appears to be an important higher-order maturational process supporting the emerging adult self

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs

    ALICE HLT High Speed Tracking on GPU

    No full text
    The on-line event reconstruction in ALICE is performed by the High Level Trigger, which should process up to 2000 events per second in proton-proton collisions and up to 300 central events per second in heavy-ion collisions, corresponding to an inp ut data stream of 30 GB/s. In order to fulfill the time requirements, a fast on-line tracker has been developed. The algorithm combines a Cellular Automaton method being used for a fast pattern recognition and the Kalman Filter method for fitting of found trajectories and for the final track selection. The tracker was adapted to run on Graphics Processing Units (GPU) using the NVIDIA Compute Unified Device Architecture (CUDA) framework. The implementation of the algorithm had to be adjusted at many points to allow for an efficient usage of the graphics cards. In particular, achieving a good overall workload for many processor cores, efficient transfer to and from the GPU, as well as optimized utilization of the different memories the GPU offers turned out to be critical. To cope with these problems a dynamic scheduler was introduced, which redistributes the workload among the processor cores. Additionally a pipeline was implemented so that the tracking on the GPU, the initialization and the output process ed by the CPU, as well as the DMA transfer can overlap. The GPU tracking algorithm significantly outperforms the CPU version for large events while it entirely maintains its efficiency

    Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.7Calouste Gulbenkian Foundation from LisbonSwiss Fonds Kidagan, ArmeniaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Financiadora de Estudos e Projetos (FINEP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Natural Science Foundation of China (NSFC)Chinese Ministry of Education (CMOE)Ministry of Science and Technology of China (MSTC)Ministry of Education and Youth of the Czech RepublicDanish Natural Science Research CouncilCarlsberg FoundationDanish National Research FoundationEuropean Research Council under European CommunityHelsinki Institute of PhysicsAcademy of FinlandFrench CNRS-IN2P3Region Pays de LoireRegion AlsaceRegion AuvergneCEA, FranceGerman BMBFHelmholtz AssociationGeneral Secretariat for Research and Technology, Ministry of Development, GreeceHungarian OTKANational Office for Research and Technology (NKTH)Department of Atomic EnergyDepartment of Science and Technology of the Government of IndiaIstituto Nazionale di Fisica Nucleare (INFN) of ItalyMEXT, JapanJoint Institute for Nuclear Research, DubnaNational Research Foundation of Korea (NRF)CONACYTDGAPA, MexicoALFA-ECHELEN Program (High-Energy physics Latin-American-European Network)Stichting voor Fundamenteel Onderzoek der Materie (FOM)Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), NetherlandsResearch Council of Norway (NFR)Polish Ministry of Science and Higher EducationNational Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS)Federal Agency of Science of the Ministry of Education and Science of Russian FederationInternational Science and Technology Center, Russian Academy of SciencesRussian Federal Agency of Atomic EnergyRussian Federal Agency for Science and InnovationsCERN-INTASMinistry of Education of SlovakiaDepartment of Science and Technology, South AfricaCIEMATEELAMinisterio de Educacion y Ciencia of SpainXunta de Galicia (Conselleria de Educacion)CEADENCubaenergia, CubaIAEA (International Atomic Energy Agency)Swedish Reseach Council (VR)Knut & Alice Wallenberg Foundation (KAW)Ukraine Ministry of Education and ScienceUnited Kingdom Science and Technology Facilities Council (STFC)The United States Department of EnergyUnited States National Science FoundationState of TexasState of OhioFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Get PDF
    We present measurements of Underlying Event observables in pp collisions at s√=0.9 and 7TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p T,LT in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p T thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2–3 between the lower and higher collision energies, depending on the track p T threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed p T in the Transverse region by about 10–30%

    Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV

    No full text
    The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions
    • 

    corecore